
# 1998 International Union of Crystallography Acta Crystallographica Section A
Printed in Great Britain ± all rights reserved ISSN 0108-7673 # 1998

1014

Acta Cryst. (1998). A54, 1014±1018

Average Unit Cell of the Fibonacci Chain

Janusz Wolny

Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy, al. Mickiewicza 30, 30-059 KrakoÂw,
Poland

(Received 9 January 1998; accepted 15 May 1998 )

Abstract

An average unit cell for the Fibonacci chain has been
constructed in physical space. The positions of atoms
have been replaced by a statistical probability function
of atomic displacements from the nearest point of the
reference lattice. An analytical expression for diffraction
peak intensities has been derived.

1. Introduction

The diffraction pattern of any structure can be obtained
by Fourier transformation of its atomic positions. For
periodic structures, like single crystals, this transforma-
tion can be reduced to the relevant unit cell only, and the
diffraction pattern consists of sharp Bragg peaks which
coincide with the points of the appropriate reciprocal
lattice. Such a concept of the reciprocal lattice is ex-
tremely powerful in diffraction analysis and reduces the
problem of structure determination to ®nding atomic
positions in the unit cell. However, for aperiodic struc-
tures, such a simple unit cell does not exist in physical
space and the diffraction pattern is then an average over
the whole structure. In the case of quasicrystals and
modulated structures, one can recover periodicity of the
structure going to higher dimensions (de Bruijn, 1981;
Kalugin et al., 1985; Kramer & Neri, 1984; Duneau &
Katz, 1985; Elser, 1985; Jaric, 1986; Janssen, 1988;
Jagodzinski, 1991; Hof, 1995, 1997; Senechal, 1997). In
this approach, it is assumed that the structure is periodic
in higher-dimensional space and the projection of a
certain part of such an arti®cial lattice gives the real
quasi-periodic structure (`cut and project method'). The
periodicity of the higher-dimensional structure allows
the conventional analysis of diffraction patterns, which
is based on the idea of the reciprocal lattice (Steurer et
al., 1993). One can also perform analytical calculations
in the perpendicular space. For a Fibonacci chain, a ¯at
window function with a width h0 � �2, where � is an
irrational number of about 1.618, gives the following
expression for the intensity:

I � �sin�w�=w�2; �1�
where

w � kperph0=2 �2�

and

k � �2�=��2 � 1����1� � �2�
kperp � �2�=��2 � 1���ÿ�1 � �2��:

�3�

�1 and �2 are integers labelling a reciprocal-lattice point
in quadratic higher-dimensional space. For the particular
direction [1, 1] in two dimensions, the two indices �1 and
�2 are equal and then (2) can be written as

w�1;1� � k=2�: �4�

Convoluting (4) and (1), one gets the analytical
expression for the envelope function A in physical space
(Fig. 1).

However, the physical-space analysis for quasicrystals
should be suf®cient to get similar results (see Mermin,
1992). Additionally, there are many `defected' struc-
tures, like structures with random displacements of
atoms, for which the higher-dimensional lattices do not
exist and the appropriate analysis based on the recip-
rocal lattice is less useful.

In this paper, another approach to diffraction pattern
calculations is applied (Wolny, 1992, 1993, 1998a,b;
Wolny & Pytlik, 1993). In such an approach, a new
concept of periodicity is used, which is quite different
from the one discussed above. The periodicity has no
relation to the structure itself, which can be either
periodic or not, and it is simply related to the wave-
length of the scattered wave vector. Such natural
periodicity of the scattered waves de®nes the so-called
reference lattice. It ®nally gives new expressions for the
structure factor which are based on probability distri-
butions of distances between the atomic positions and
the `points' of the reference lattice.

2. Structure factor

It has already been shown (Wolny, 1998a) that using the
concept of the reference lattice, for L different types of
atoms (with absolute values of scattering power equal to
fl) arranged in a cluster of N atoms, one gets the
following expression for the structure factor:



F�k0� �
PN
n�1

fn exp�ik0 � rn�

� PN
n�1

fn exp�ik0un�

� N=L
PL
l�1

fl

R�=2

ÿ�=2

Pl�u� exp�ik0u� du; �5�

where Pl�u� is the probability distribution of distances u
(the shortest distance between the atomic position and
the appropriate `point' of the reference lattice) for the
lth type of atom.

Probability distributions Pl�u� are bounded to the
range of u from ÿ�=2 to �=2 �� � 2�=k0� and de®ne the
average unit cell. The structure factor is simply calcu-
lated by the Fourier transform of such a unit cell.
Unfortunately, this cell depends on the scattering vector
and, in principle, for each scattering vector one gets
another unit cell. However, for any periodic series of
scattering vectors (k � mk0;m � 1; 2; 3; 4�, the distri-
butions are equivalent in a Fourier space which means
that, from the point of view of diffraction analysis, the
average unit cell given by an appropriate probability
distribution Pl�u� describes also diffraction intensities
for all higher harmonics of a given scattering vector.

Formula (5) describes the structure factor only for a
periodic set of scattering vectors and it can be effectively
used for analysis of any periodic set of diffraction peaks.
For modulated structures (including quasicrystals),
there are usually two periods, a; b, which can also be
incommensurate. Using two reference lattices, the ®rst
one having periodicity a and the second one periodicity
b, the structure factor for the sum of two scattering
vectors k0 � 2�=a; q0 � 2�=b can be expressed by

F�k0 � q0� �
PN
n�1

fn exp�i�k0 � q0�xn�

�PL
l�1

fl

PNl

n�1

exp�i�k0ul
n � q0vl

n��

�PL
l�1

fl

R R
Pl�u; v� exp�i�k0u� q0v�� du dv;

�6�
where u and v are the shortest distances of the atomic
position from the appropriate points of the two refer-
ence lattices and P�u; v� is the corresponding probability
distribution, which simply stands for the unit cell.
Although the unit cell [i.e. P�u; v�] is determined for
scattering vector �k0 � q0�, it can be also used for a sum
of all higher harmonics of k0 and q0, i.e. nk0 �mq0,
where n;m are integers. This means that the average
unit cell, calculated for the wave vectors of the main
structure and its modulation, can be used to calculate
the peak intensities of any of the main re¯ections and its
satellites of arbitrary order. Using (6), it is possible to
calculate the intensities of all peaks observed in the
diffraction patterns.

3. Average unit cell

In this section, for simplicity we will suppose that all fl

are equal to unity, which is the case for the discussed
Fibonacci chain. If the lengths of the two building
elements of the Fibonacci chain are equal to 1 and �,
the average distance is then equal to a � 1� 1=�2 �
1.382, and the corresponding scattering vector
k0 � 2�=a � 4:547. The same scattering centres have
been placed at the join interface between consecutive
bounds. From the numerical calculations, one gets that
the probability distribution (and also the average unit
cell) for k0 is a ¯at function bounded within fÿu0 � u0g,
where u0 � 1=�2��, as is shown in Fig. 2(a). The same
function describes all higher harmonics of k0 �k � mk0�
and its Fourier transform is:

F�k� � N sin�ku0�=ku0; �7�
which leads to the following expression for the envelope
function connecting peak maxima of periodic series of
diffraction peaks (dashed line A in Fig. 1):

I�k�=N2 � �sin�ku0�=ku0�2: �8�
Formula (8) is similar to (1) and (4) obtained from the
higher-dimensional approach. There is also scaling
observed for this structure, which results in the
appearance of other peaks for k1 � k0�; k2 � k0�

2, and
so on. As shown in Fig. 2(b), all the probability distri-
butions for kn � k0�

n have a rectangular shape.
Performing a Fourier transform (5), one immediately
gets an expression for an appropriate envelope function

Fig. 1. The diffraction pattern of the Fibonacci chain. The dashed
curves have been calculated for the rectangular probability
distributions shown in Fig. 2. The dotted lines represent equation
(9) and connect diffraction peaks ruled by an inverse Debye±Waller
factor.
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(e.g. dotted line going through peaks 1, 2, 3, 4, 7 and 10
in Fig. 1):

I=N2 � �sin�w�=w�2; where w � k2
0u0=k: �9�

Other envelope functions marked by other dotted lines
in Fig. 1 can be obtained from (9) by replacing k0 by its
higher harmonics, i.e. 2k0, 3k0;. Usually, such envelope
functions are calculated in higher dimensions using a
perpendicular-space window function. Here it is shown
that all the calculations can also be performed in
physical space only.

The Fibonacci chain is an example of an incommen-
surately modulated structure and there are in®nitely
many periodic series of diffraction peaks. One can call
them main re¯ections or ®rst-order satellites, second-
order satellites, and so on. Using the two distances a and
b � �a, the calculated probability distribution P�u; v�
has a rectangular shape along the line given by the
relation

v � ÿ�2uÿ b=2 �10�

(see also Fig. 3). In this parameter space, the unit cell is
bounded to �ÿa=2; a=2� for u and �ÿb=2; b=2� for v.
Performing the Fourier transform, one gets the
following expression for the intensity of the diffraction
peaks and their satellites:

I=N2 � �sin�w�=w�2; �11�
where

w � �nk0 ÿ �2mq0�u0 � k0�nÿm��u0 �12�
and n and m are the indices of main re¯ection and its
satellite; u0 � 1=�2��, k0 � 2�=a, q0 � 2�=b � k0=�.
Equations (11) and (12) can be used to calculate the
intensity of any peak observed in the diffraction pattern
for the Fibonacci chain. One can easily recognize that
(12) is identical to (2) for the following substitutions of
parameters:

�1 � n�m and �2 � n; �13�
which means that these two different approaches to
diffraction analysis of the Fibonacci chain are fully
equivalent. Knowing that the peak position in the
diffraction pattern is given by

k � nk0 �mq0 � k0�n�m=��; �14�
one can write (12) in the form

w � �kÿ �1� �2�mq0�u0 � �kÿmq1�u0: �15�
Expression (15), together with (11), has been used to
calculate all the envelope functions shown in Fig. 4 and
connecting peak maxima of the main re¯ections (m � 0)
(full line), and their satellites (up to third order, i.e. for
m � 1; 2; 3) (broken lines), respectively. The value of q1,
i.e.

q1 � �1� �2�q0 � 2�� � 10:17 �16�

Fig. 3. Average unit cell in a parameter space. The marked rectangle
represents the boundary of the discussed unit cell. The probability
distribution P�u; v� is non-zero only along the marked line with a
constant value equal to 1=31=2.

Fig. 2. Average unit cell for (a) a periodic series of scattering vectors
(k � mk0; k0 � 2�=a � 4:547), (b) scattering vectors given by the
scaling relation.
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represents the shifts of the envelope functions of the
satellites for a given order and corresponds to the same
value marked as k00 (Figs. 2 and 4 in Wolny, 1998a) and
obtained as an intersection of the physical space with
rational direction [1, 1]. More generally speaking, the
modulated-structure approach in higher dimensions is
always connected with the analysis of the diffraction
patterns along some rational direction. By using an
appropriate labelling, like that given by (13), one can
easily calculate all the diffraction peak intensities in an
average unit-cell approach.

4. Concluding remarks

It has been shown that for a Fibonacci chain any peak
intensity can be calculated in physical space by the
Fourier transform of an appropriate average unit cell.
Such a unit cell depends on the scattering vector. The
atomic positions of the crystallographic unit cell are
replaced by probability distributions of atoms around
the points of the reference lattice. For the Fibonacci
chain, all of these distributions have a rectangular shape
(see Fig. 2) and describe the appropriate average unit
cells. Such a property of the average unit cell leads to a
simple formula for envelope functions connecting peak
intensities of periodic series of diffraction peaks (they
are also called peaks ruled by a normal Debye±Waller
factor, which is the ®rst approximation to their inten-
sities). In a similar way, one can obtain the envelope
function going through the peak maxima of series of
peaks described by scaling; their intensities increase
with increasing value of the scattering vector and such
an envelope function is ruled by an inverse Debye±
Waller factor [this name comes from the approximation

which is limited to the second moment of the window
function in perpendicular space of higher-dimensional
analysis (Wolny, 1992)].

A very simple description of the diffraction pattern of
the Fibonacci chain is obtained whenever this chain is
regarded as a modulated structure. The diffraction
pattern can then be calculated using only a single
average unit cell (Fig. 3). The corresponding probability
distribution has a rectangular shape along the line given
by (10), which allows calculation of the main diffraction
peaks and their satellites. The obtained analytical
expression for diffraction intensities is similar to that
obtained from higher-dimensional analysis. However,
the great advantages of the presented approach
compared with higher-dimensional analysis are the
following: (i) all the calculation has been performed in
physical space; (ii) any displacement of the atoms from
their perfect positions can be easily incorporated in
calculations by simple modi®cation of the average unit
cell and of the corresponding probability distribution
P�u�. Such displacements in higher-dimensional analysis
are limited only to calculations of the so-called phason
contribution.

The presented approach can be easily applied to the
analysis of any experimental data. For each direction,
one should measure several diffraction intensities which
can be used to ®t an appropriate probability distribu-
tion. In the ®rst approximation, such a distribution can
be chosen as a one-parameter Gaussian distribution. For
more complicated distributions, a cumulant expansion
can be used which leads to a linear equation for some
moments of such distribution (Wolny, 1993).

Helpful discussions with J. P. Gazeau and L. Pytlik
are acknowledged. Financial support from the State
Committee for Scienti®c Research (KBN) is also
acknowledged.
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